CTS-LC0020-SM 1.25 SFP 1310nm LC 20km DDMI

Product Features

- FP laser transmitter and PIN photo-detector
- Dual Data-rate of 1.25Gbps/1.0625Gbps Operation
- Up to 20KM transmission distance on 9/125µm SMF
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitor Interface
- Very low EMI and excellent ESD protection
- +3.3V single power supply
- Compatible with RoHS
- Operating case temperature : Commercial: 0°C to +70°C

Extended: -10°C to +80°C Industrial: -40°C to +85°C

General

CTS-LC0020-SM SFP transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 20km transmission distance

The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. Transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA

Absolute Maximum Ratings

	3				
Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	Vcc	-0.5	3.6	V	
Storage Temperature		-40	85	°C	
Relative Humidity		5	85	%	

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the module

General Operating Characteristics

Contorui Op	oracing oriara	ocor iotio	•				
Parameter		Symbol	Min.	Тур	Max.	Unit	Note
Data Rate	Gigabit Ethernet			1.25		Gb/s	
	Fiber Channel			1.0625			
Supply	Voltage	Vcc	3.1	3.3	3.5	V	
Supply	Current	Icc			220	mA	
			0		70		
Operating Case Temperature		Tc	-10		80	°C	
	·		-45		85		

Electrical Input/Output Characteristics

Parameter		Symbol	Min.	Тур	Max.	Unit	Note
Transm	itter						
Diff. input volt	age swing		300		1800	mVpp	1
Tx Disable input	Н	VIH	2.0		Vcc+0,3	V	
	L	VIL	0		0.8		
Tx Fault output	Н	VOH	2.0		Vcc+0.3	V	2
	L	VOL	0		0.8		
Input Diff. Im	pedance	Zin		100		Ω	
Receiv	/er						
Diff. output vol	tage swing		400		1000	mVpp	3
Tx Disable input	Н	VOH	2.0		Vcc+0.3	V	2
	L	VOL	0		0.8		

Note 1) TD+/- are internally AC coupled with 100Ω differential termination inside the module.

2) Tx Fault and Rx LOS are open collector outputs, which should be pulled up with to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V.

3) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.

Optical Characteristics

Parameter	Symbol	Min.	Тур	Max.	Unit	Note
Transmitter						
Ave. Output Power (Enable)	Po	-9		-3	dBm	1
Extinction Ratio	ER	9			dB	1
Rise/Fall Time (20%-80%)	Tr/Tf			0.26	ns	2
Wavelength Range		1270		1360	nm	
Spectral Width (RMS)				4	nm	
Output Optical Eye	Compliant v	with IEEE	802.3	z (class 1 la	aser safe	ty)
Receiver						
Operating Wavelength		1270		1610	nm	
Sensitivity	Pimin			-22	dBm	3
Min. Overload	Pimax	-3			dBm	3
LOS Assert	Pa	-35			dBm	
LOS De-assert	Pd			-23	dBm	
LOS Hysteresis	Pd-Pa	0.5		6	dB	

Note: 1) Measured at 1250 Mb/s with PRBS 27 - 1 NRZ test pattern.

2) Unfiltered, measured with a PRBS 27-1 test pattern @1.25Gbps

3) Measured at 1250 Mb/s with PRBS 27 - 1 NRZ test pattern for BER < 1x10-12

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems **Ordering Information**

Part Number	Output Power	Rec. Sens	Data Rate	Wavelength	Distance
CTS-LC0020-SM	-9 ~ -3 db	-22db	1.25/1.0625Gbps	1310nm	20km
	Diagnostics			•	

-	riagilostics				
	Parameter	Range	Unit	Accuracy	Calibration
	Temperature	0 to +70 -40 to +85	°C	±3°C	Internal/ External
	Voltage	3.0 to 3.6	V	±3%	Internal/ External
	Bias Current	2 to 80	mA	±10%	Internal/ External
	TX Power	-12 to -1	dBm	±3dB	Internal/ External
	RX Power	-25 to 0	dBm	±3dB	Internal/ External

Pin Definitions And Functions

וור	tions Ar	ıa F	unctio	ns		
29	V _{IR} T EN	DOCUMENT 1	Vat			Pin 20
19	19-	2	TX FAULT	TOP VIEW		
13	12+	3	TX DESABLE	OF BOARD	/	
17	VmT	- 4	MOD-BEF(2)		/ -	Pin 11
16	VecT	5	MOD-BEF(1)			
15	VecR	- 6	MOD-DEF(II)			=
14	VHR	2	RATE SELECT			
13	RD+		LOS		(-	Pin 10
12	FD-	9	V ₁₁ R	BOTTOM VIEW		
11	V _H R	11	V _{II} R	OF BOARD		Pin 1
	TOP OF BOARD		BOTTOM OF BOARD ED THROUGH TOP OF BOARD			

	TOP OF BOARD	P in 1 P in 1 P in 1	
PIN	Name	Function	Notes
1	VeeT	Tx ground	
2	Tx Fault	Tx fault indication, Open Collector Output, active "H"	1
3	Tx Disable	LVTTL Input, internal pull-up, Tx disabled on "H"	2
4	MOD-DEF2	2 wire serial interface data input/output (SDA)	3
5	MOD-DEF1	2 wire serial interface clock input (SCL)	3
6	MOD-DEF0	Model present indication	3
7	Rate select	No connection	
8	LOS	Rx loss of signal, Open Collector Output, active "H"	4
9	VeeR	Rx ground	
10	VeeR	Rx ground	
11	VeeR	Rx ground	
12	RD-	Inverse received data out	5
13	RD+	Received data out	5
14	VeeR	Rx ground	
15	VccR	Rx power supply	
16	VccT	Tx power supply	
17	VeeT	Tx ground	
18	TD+	Transmit data in	6
19	TD-	Inverse transmit data in	6
20	VeeT	Tx ground	

Notes: 1) When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a 4.7 - 10K Ω resistor on the host board. 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 - 10 \text{K}\Omega$ resistor. Its states are: Low (0 - 0.8 V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0V~Vcc+0.3V): Transmitter Disabled Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K -10K Ω resistor on the host board. The pull-up voltage shall be between .0V~Vcc+0.3V. Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID

4) When high, this output indicates loss of signal (LOS). Low indicates normal operation. 5) RD+/-: These are the differential receiver outputs. They are AC coupled 100 Ω differential lines which should be terminated with 100 Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.

6) $\overrightarrow{TD}+\overrightarrow{J}-:$ These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. Typical Interface Circuit

Functional Diagram

