Distance ## CTM-LC0500-MM 1.25 SFP 850nm LC 550m DDMI ## **Product Features** - 850nm VCSEL laser and PIN photodetector - Up to 1.25Gbps data rate operation - Compliant with SFP MSA and SFF-8472 with duplex LC receptacle - Digital Diagnostic Monitor Interface - 500m transmission with 50/125µm MMF - 300m transmission with 62.5/125µm MMF - Very low EMI and excellent ESD protection - +3.3V single power supply - RoHS compliant - Case operating temperature : Commercial: 0°C to +70°C / Extended: -10°C to +80°C / Industrial: -40°C to +85°C #### General CTM-LC0500-MM Transceivers are high performance, cost effective modules supporting data-rate of 1.25Gbps and 550m transmission distance with MMF. The transceiver consists of three sections: a VCSEL laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA. #### **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | Note | |---------------------|--------|------|------|------|------| | Supply Voltage | Vcc | -0.5 | 4.0 | V | | | Storage Temperature | | -40 | 85 | °C | | | Relative Humidity | | | 85 | % | | | | 4.1 | | | | | Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the module #### General Operating Characteristics | 00110101 | zonoral operating enaractories | | | | | | | |--------------|--------------------------------|--------|------|--------|------|------|------| | Parameter | | Symbol | Min. | Тур | Max. | Unit | Note | | Data Rate | Gigabit Ethernet | | | 1.25 | | Gb/s | | | | Fiber Channel | | | 1.0625 | | | | | Suppl | y Voltage | Vcc | 3.1 | 3.3 | 3.5 | V | | | Suppl | y Current | lcc | | | 220 | mA | | | | , | | 0 | | 70 | | | | Operating Ca | ase Temperature | Tc | -10 | | 80 | °C | | | | · | | -45 | | 85 | | | ## **Electrical Input/Output Characteristics** | Param | eter | Symbol | Min. | Тур | Max. | Unit | Note | |------------------|------------|--------|------|-----|---------|------|------| | Transmitter | | | | | | | | | Diff. input volt | age swing | | 300 | | 1600 | mVpp | 1 | | Tx Disable input | H | VIH | 2.0 | | Vcc+0.3 | V | | | | L | VIL | 0 | | 0.8 | | | | Tx Fault output | Н | VOH | 2.0 | | Vcc+0.3 | V | 2 | | · | L | VOL | 0 | | 0.8 | | | | Input Diff. Im | pedance | Zin | | 100 | | Ω | | | Receiv | /er | | | | | | | | Diff. output vol | tage swing | | 400 | | 1000 | mVpp | 3 | | Tx Disable input | Н | VOH | 2.0 | | Vcc+0.3 | | 2 | | | L | VOL | 0 | | 0.8 | V | | Note 1) TD+/- are internally AC coupled with 100Ω differential termination inside the module. 2) Tx Fault and Rx LOS are open collector outputs, which should be pulled up with to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V. 3) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES. ### **Optical Characteristics** | Parameter | Symbol | Min. | Тур | Max. | Unit | Note | |----------------------------|---------|------------|-------|-------------|-----------|--------| | Transmitter | | | | | | | | Ave. Output Power (Enable) | Po | -11 | | 1-1 | dBm | 1 | | Extinction Ratio | ER | 9 | | | dB | 1 | | Rise/Fall Time (20%-80%) | Tr/Tf | | | 0.26 | ns | | | Wavelength Range | | 840 | 850 | 860 | nm | 2 | | Spectral Width (RMS) | | | | 0.65 | nm | | | Output Optical Eye | Complia | nt with IE | EE802 | .3 z (class | 1 laser s | afety) | | Receiver | | | | | | | | Operating Wavelength | | 750 | | 860 | nm | | | Sensitivity | Pimin | | | -18 | dBm | 3 | | Min. Overload | Pimax | 0 | | | dBm | 3 | | LOS Assert | Pa | -35 | | | dBm | | | LOS De-assert | Pd | | | -19 | dBm | | | LOS Hysteresis | Pd-Pa | 0.5 | | 6 | dB | | Note: 1) Measured at 1250 Mb/s with PRBS 27 - 1 NRZ test pattern. 2) Unfiltered, measured with a PRBS 27-1 test pattern @1,25Gbps 3) Measured at 1250 Mb/s with PRBS 27 - 1 NRZ test pattern for BER < 1x10-12 ### **Applications** - Gigabit Ethernet - Fiber Channel Switch to Switch interface - Switched backplane applications - Router/Server interface - Other optical transmission systems Ordering Information #### Part Number | Output Power | CTM-LC0500-MM | - I I - I UD | -1000 | 1.20/ 1.0020 Obp3 | 00011111 | Jookiii | |--------------|-------------------|-------------------|----------|--------------------| | Diagnostics | | | | | | Parameter | Range | Unit | Accuracy | Calibration | | Temperature | 0 to +70 -40 to - | +85 °C | ±3°C | Internal/ External | | Voltage | 3.0 to 3.6 | V | ±3% | Internal/ External | | Bias Current | 2 to 15 | mA | ±10% | Internal/ External | | TX Power | -13 to -1 | dBm | ±3dB | Internal/ External | | RX Power | -21 to 0 | dBm | +3dB | Internal/ External | **Data Rate** SFP-100FX85-MM SFP 155M 850nm 2KM SN:S0185071120103 CE FC Wavelength # Pin Definitions And Functions Rec. Sens | 29 V _{II} T | SOURNE 1 VILT | Pin 20 | |----------------------|----------------------|----------------| | 19 13- | 2 TX FAULT | TOP VIEW | | 10 12+ | 3 TX DESAULE | OFBOARD | | 17 V _B T | 4 MOD-DEF(2) | Pin 11E | | 16 V _{EC} T | S MOD-DEF(1) | | | 15 V _{EC} R | 6 MOD-DEF(II) | | | 14 V _H R | 7 RATE SELECT | | | 13 RD+ | B 105 | Pin 10p | | 12 RD- | 5 V ₁₁ R | BOTTOM VIEW) | | 11 V _H R | 11 V _{II} R | OF BOARD Pin 1 | | | TOP OF BOARD | DOTTOM OF BOARD) LES YEAVES THROUGH TOP OF SOLERO) | | |-----|--------------|--|--------| | PIN | Name | Function | Notes | | 1 | VeeT | Tx ground | | | 2 | Tx Fault | Tx fault indication, Open Collector Output, active "H" | Note 1 | | 3 | Tx Disable | LVTTL Input, internal pull-up, Tx disabled on "H" | Note 2 | | 4 | MOD-DEF2 | 2 wire serial interface data input/output (SDA) | Note 3 | | 5 | MOD-DEF1 | 2 wire serial interface clock input (SCL) | Note 3 | | 6 | MOD-DEF0 | Model present indication | Note 3 | | 7 | Rate select | No connection | | | 8 | LOS | Rx loss of signal, Open Collector Output, active "H" | Note 4 | | 9 | VeeR | Rx ground | | | 10 | VeeR | Rx ground | | | 11 | VeeR | Rx ground | | | 12 | RD- | Inverse received data out | Note 5 | | 13 | RD+ | Received data out | Note 5 | | 14 | VeeR | Rx ground | | | 15 | VccR | Rx power supply | | | 16 | VccT | Tx power supply | Note 6 | | 17 | VeeT | Tx ground | Note 6 | | 18 | TD+ | Transmit data in | | | 19 | TD- | Inverse transmit data in | | | 20 | VeeT | Tx ground | | Notes: 1) When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a 4.7 - 10K Ω resistor on the host board. 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 - 10K\Omega$ resistor. Its states are: Low (0 - 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0V~Vcc+0.3V): Transmitter Disabled Open: Transmitter Disabled 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. The pull-up voltage shall be between .0V~Vcc+0.3V. Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID 4) When high, this output indicates loss of signal (LOS). Low indicates normal operation. 5) RD+/-: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. 6) $\overrightarrow{TD}+\overrightarrow{J}-:$ These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the ## **Functional Diagram** module and is thus not required on the host board. # Package Dimensions **Typical Interface Circuit**